A syntactic proof of decidability for the logic of bunched implication BI

نویسنده

  • Revantha Ramanayake
چکیده

The logic of bunched implication BI provides a framework for reasoning about resource composition and forms the basis for an assertion language of separation logic which is used to reason about software programs. Propositional BI is obtained by freely combining propositional intuitionistic logic and multiplicative intuitionistic linear logic. It possesses an elegant proof theory: its bunched calculus combines the sequent calculi for these logics. Several natural extensions of BI have been shown as undecidable, e.g. Boolean BI which replaces intuitionistic logic with classical logic. This makes the decidability of BI, proved recently via an intricate semantical argument, particularly noteworthy. However, a syntactic proof of decidability has thus far proved elusive. We obtain such a proof here using a proof-theoretic argument. The proof is technically interesting, accessible as it uses the usual bunched calculus (it does not require any knowledge of the semantics of BI), yields an implementable decision procedure and implies an upper bound on the complexity of the logic.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A purely syntactic proof of decidability for BI

The logic of bunched implication BI provides a framework for reasoning about resource composition and forms the basis for an assertion language of separation logic which is used to reason about software programs. Propositional BI is obtained by freely combining propositional intuitionistic logic and multiplicative intuitionistic linear logic. It possesses an elegant proof theory: its bunched ca...

متن کامل

An Algebraic Glimpse at Bunched Implications and Separation Logic

We overview the logic of Bunched Implications (BI) and Separation Logic (SL) from a perspective inspired by Hiroakira Ono’s algebraic approach to substructural logics. We propose generalized BI algebras (GBI-algebras) as a common framework for algebras arising via “declarative resource reading”, intuitionistic generalizations of relation algebras and arrow logics and the distributive Lambek cal...

متن کامل

Exploring the relation between Intuitionistic BI and Boolean BI: an unexpected embedding

The logic of Bunched Implications, through its intuitionistic version (BI) as well as one of its classical versions called Boolean BI (BBI), serves as a logical basis to spatial or separation logic frameworks. In BI, the logical implication is interpreted intuitionistically whereas it is generally interpreted classically in spatial or separation logics like in BBI. In this paper, we aim at givi...

متن کامل

Bunched Hypersequent Calculi for Distributive Substructural Logics

We introduce a new proof-theoretic framework which enhances the expressive power of bunched sequents by extending them with a hypersequent structure. A general cut-elimination theorem that applies to bunched hypersequent calculi satisfying general rule conditions is then proved. We adapt the methods of transforming axioms into rules to provide cutfree bunched hypersequent calculi for a large cl...

متن کامل

On Bunched Predicate Logic

We present the logic of bunched implications, BI, in which a multiplicative (or linear) and an additive (or intuitionistic) implication live side-by-side. The propositional version of BI arises from an analysis of the proof-theoretic relationship between conjunction and implication, and may be viewed as a merging of intuitionistic logic and multiplicative, intuitionistic linear logic. The predi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016